Объявлены победители Конкурса докладов (best paper award):
А. В. Николаев "On 1-Skeleton of the Cut Polytopes" в номинации «Лучшая теоретическая работа»,
И. А. Давыдов (совместная работа с А. М. Габдуллиной, М. Шевцовой, Д. И. Архиповым) "Tabu Search for a Service Zone Clustering Problem" в номинации «Лучшая прикладная работа»,
Д. В. Ярмошик (совместный доклад с М. И. Персияновым) "On the Application of Saddle-Point Methods for Combined Equilibrium Transportation Models" в номинации «Лучшая работа молодых авторов».
Программный комитет поздравляет всех лауреатов!
Конкурс проведен при спонсорской поддержке BIA Technologies.
30.06.2024. Программа конференции
Опубликована программа с расписанием работы секций. Перейти.
28.06.2024. Том LNCS
Опубликован первый том трудов MOTOR'24 в серии LNCS.
Крайний срок для отправки тезисов перенесен на 5 февраля 2024 г. Ссылка на систему обработки тезисов и статей будет опубликована в данном разделе как только она станет доступна.
Параллельные вычисления для ускорения решения задач оптимизации
Приложения в исследовании операций: задачи составления расписаний, маршрутизации, размещения предприятий, упаковки и раскроя, управления производством и т.д.
Prof. Xujin Chen
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China Undirected Networks Immune to the Informational Braess's Paradox
The Informational Braess's paradox exposes a counterintuitive phenomenon that disclosing additional road segments to some selfish travelers results in increased travel times for these individuals. This paradox expands upon the classic Braess's Paradox by relaxing the assumption that all travelers possess identical and complete information about the network. In this presentation, we explore structual conditions that prevent the informational Braess paradox in undirected networks.
Prof. Rentsen Enkhbat
Business school of National University of Mongolia, Ulaanbaatar, Mongolia Recent Advances in Game Theory
Тема доклада будет объявлена позднее.
Проф. Николай Н. Гущинский Беларусь, Минск Models and methods for optimization of electric public transport systems
The transition towards sustainable cities becomes an increasingly pressing issue because of the
growing awareness about the climate change. One of the critical transition directions is to reduce
the greenhouse gas emissions generated by transportation. One of efficient answers to this
challenge is the implementation of electric public transportation systems. In order to achieve the
best impact, it is imperative to design the infrastructure and the network of the public
transportation in an optimized way.
The following problems concerning strategic, tactical and operational aspects of the electric bus
planning process and scheduling are discussed: a) investment of electric bus fleet and charging
infrastructure; b) design of charging infrastructure; c) the electric vehicle scheduling; d) the
charging scheduling problem.
The models and optimization methods for different charging technologies are considered:
- slow plug-in chargers installed at bus depots;
- fast plug-in or pantograph chargers installed at terminals of bus lines or at bus stops;
- overhead contact lines or inductive (wireless) chargers that are used to recharge buses during
driving;
- battery swapping.
Проф. Роланд Хильдебранд МФТИ (Московский физико-технический институт), г. Долгопрудный, Россия Tuning methods for minimization of self-concordant functions with optimal control
In the last decade the usage of optimization methods for performance estimation and tuning of other optimization methods has became fashionable. For instance, semi-definite programming allows to analyze the behaviour of accelerated gradient descent methods at minimizing functions of different regularity. Detecting the worst-case performance with respect to the minimized function and maximizing this performance with respect to the parameters of the method allows to obtain the best parameter set.
Here we show how to perform a similar analysis of the Newton method when minimizing self-concordant functions. This task arises as a subproblem in more complex structured convex optimization problems such as semi-definite programming inside path-following methods. The appropriate framework for optimizing the parameters, in particular, the step length and the search direction, is optimal control theory. We present a general technique to use the Pontryagin maximum principle in the analysis of the Newton step on a self-concordant function and specialize it in several case studies.
The talk in part presents joint work with Anastasia Ivanova.
Проф. Елена В. Константинова China Three Gorges University, Yichang, China & Институт математики им. С.Л. Соболева СО РАН, Новосибирск, Россия Recent progress in domination theory
In this talk, some recent results in domination theory are
presented. In 2020, T.W. Haynes et al. introduced coalitions and
coalition partitions based on dominating sets in graphs as a
graph-theoretical model to describe political coalitions. The authors
have been studied the property of this concept and suggested a list of
open problems. In particular, it was suggested to study connected
coalitions based on connected dominating sets. In this talk we focus on
studying connected coalitions and their partitions in graphs with
emphasising to polynomial-time algorithms determining whether the
connected coalition number of a graph G of order n is either n or
n-1. The talk is based on joint works with S. Alikhani, D. Bakhshesh,
and H. Golmohammadi.
Проф. Панос М. Пардалос Университет Флориды, Гейнсвилл, США; ВШЭ, Нижний Новгород, Россия AI and Optimization for a Sustainable Future
Advances in AI tools are progressing rapidly and demonstrating
the potential to transform our lives. The spectacular AI tools rely
in part on their sophisticated mathematical underpinnings (e.g.
optimization techniques and operations research tools), even
though this crucial aspect is often downplayed.
In this lecture, we will discuss progress from our perspective in
the field of AI and its applications in Energy systems and Sustainability.
Проф. Александр А. Шананин, академик РАН Московский физико-технический институт, Москва, Россия Mathematical modeling of the consumer loan market in Russia (joint talk with N.V. Trusov)
In this talk we present the mathematical description of the economic behavior of a rational household in consumer loan market. The modeling of the economic behavior of households is based on the concept of a rational representative economic agent and arises to F. Ramsey. The model is formalized as an optimal control problem on a finite time horizon. The household maximizes discounted consumption with constant risk aversion, managing the dynamics of its expenditures depending on the current parameters of the economic situation and the behavioral characteristics of the household itself. We consider an imperfect market when the interest rate on loans differs from the interest rate on deposits. The difference in interest rates on loans and deposits leads to non-smoothness of the right-hand side of the differential equation for the phase variable. This motivates to use the Pontryagin maximum principle in the form of F. Clark. Applying it, we obtain an area where the household does not interact with the banking system, the special regimes arise. If we tend the time horizon of an optimal control problem to infinity, it is possible to construct a synthesis. The synthesis allows us to determine an optimal control depending on the current value of the phase variable and the parameters of the economic situation. It depends on current interest rates and on the behavioral characteristics of a representative household. We develop and investigate a new model for the formation of interest rates on consumer loans based on an analysis of commercial interests and the logic of behavior of commercial banks. The model assumes that the borrowers’ incomes are described by a geometric Brownian motion. The commercial banks assess the default risk of borrowers. According to the Feynman–Kac formula, the assessment is reduced to solving a boundary value problem for partial differential equations. An analytical solution to this problem is constructed. It is possible to reduce the solution of the boundary value problem to the Cauchy problem for the heat equation with an external source and obtain a risk assessment in analytical form with a help of the Abel equation. The models of economic behavior of households in the consumer loan market and behavior of commercial banks are identified based on Russian statistics. A specialized software has been developed to analyze the demand for consumer credit. With its help, the problems of the consumer lending market in Russia are analyzed.
Prof. Zaiwen Wen
Peking University, China Exploring the Learning-based Optimization Algorithms
Abstract: The recent revolutionary progress of artificial intelligence has brought significant challenges and opportunities to mathematical optimization. In this talk, we briefly discuss two examples on the integration of data, models, and algorithms for the development of optimization algorithms: ODE-based learning to optimize and learning-based optimization paradigms for solving integer programming. We will also report a few interesting perspectives on formalization and automated theorem proving, highlighting their potential impact and relevance in contemporary mathematical optimization.
Bio: Wen Zaiwen, Professor at Peking University. He mainly studies optimization algorithms and theory and their applications in machine learning. He was awarded the China Youth Science and Technology Award in 2016 and Beijing Outstanding Youth Zhongguancun Award in 2020. He was funded by the National Ten Thousand Talents Program for Science and Technology Innovation. He is an associate editor of “Journal of Scientific Computing”, "Communications in Mathematics and Statistics", "Journal of the Operations Research Society of China", "Journal of Computational Mathematics" and a technical editor of "Mathematical Programming Computation".
Prof. Wenwu Yu Southeast University, China "Distributed Optimization +" in Networks: A New Framework
Distributed optimization is solved by the mutual collaboration among a group of
agents, which arises in various domains such as machine learning, resource allocation,
location in sensor networks and so on. In this talk, we introduce two kinds of
distributed optimization problems: (i) the agents share a common decision variable
and local constraints; (ii) the agents have their individual decision variables but that
are coupled by global constraints.
This talk comprehensively introduce the origin of distributed optimization, classical
works as well as recent advances. In addition, based on reinforcement learning,
shortest path planning, and mixed integer programming, we build the distributed
optimization framework of distributed optimization, and also discuss their
applications. Finally, we make a summary with future works for distributed
optimization.
Yury Kochetov Black box optimization for business applications
The black-box optimization models are characterized by lack of analytical
forms for the constraints and the objectives of the problem. In the
black-box methods, we need efficiently integrate known analytical part
with explicitly unknown correlations obtained from the business simulation
models. The direct use of classical global optimization methods is
prohibitive due to the lack of exact mathematical expressions. We cannot
calculate the derivatives or sub-gradients. Moreover, the computational
cost is high due to the simulations. Hence, we have to use the problem
specific methods to optimize such black-box systems efficiently. Important
applications stem from various disciplines: multi-echelon inventory
systems, chemical and mechanical engineering, financial management,
network topology design, and others. In this talk, we will discuss some
directions in this area and theoretical bounds for global optimization
methods. Successful cases for real-world applications will be presented.
Александр Сергеевич Стрекаловский Новые Принципы Невыпуклой Оптимизации
В презентации представлены Элементы Теории Глобального поиска (ТГП) для задач
оптимизации с целевой функцией и ограничениями типа равенства и неравенства, заданных DC
функциями (разностями выпуклых функций). В таких задачах современный аппарат выпуклой
оптимизации оказывается неоперабельным не только в смысле характеризации и отыскания
глобального решения, но и при попытке «выскочить» из локального экстремума.
В докладе представлены основные свойства линейного пространства DC функций, в
частности, что на компакте , и поэтому любая задача оптимизации с непрерывными данными
может быть аппроксимирована, с любой заданной точностью, некоторой задачей DC
оптимизации. Вначале основное внимание уделено каноническим задачам DC оптимизации,
таким как выпуклые максимизация и DC минимизации на стандартных множествах, где
представлен аппарат Условий Глобальной Оптимальности (УГО), составляющих ядро ТГП.
В центре рассмотрения находится задача DC оптимизации с DC ограничениями типа
равенств и неравенств. С помощью Теории Точного Штрафа эта задача сводится к задаче без
ограничений, целевая функция которой оказывается DC. Для последней задачи доказаны
соответствующие УГО, инициирующие построение некоторой Схемы Глобального Поиска
(СГП), использующей специальные Методы Локального Поиска (МЛокП), «внутри» которых
применяются современные (классические) методы выпуклой оптимизации.
В заключение, представлены приложения разработанного подхода, такие как, численный
поиск равновесий Нэша в биматричной игре, двухуровневая оптимизация, и классическая
задача решения системы нелинейных уравнений (СНАУ). Приводится (ограниченный) список
публикаций по математической оптимизации и оптимальному управлению.
Pavel Borisovsky Application of GPU computing to solving discrete optimization problems
Parallel computing on graphic processors (GPUs) is getting more and more popular. Since NVIDIA released the CUDA development tool, it has become convenient to use GPUs for general-purpose computing and not just for graphics display tasks. A feature of a GPU is the presence of a large (hundreds and thousands) number of cores, which allows to significantly speed up the calculation, but requires to design special parallel algorithms. While the development of traditional processors (CPUs) has recently slowed down, the characteristics of the GPU (number of cores, memory size, power consumption, and cost) are improving rapidly. In this tutorial, we will learn the basics of GPU computing in CUDA and OpenCL and briefly review the pros and cons of using GPUs in various discrete optimization algorithms.
Авторы могут представить статьи, содержащие новые неопубликованные
результаты по тематике конференции. Статьи объемом 12-15 страниц
должны быть подготовлены в формате Springer LNCS и представлены в
виде PDF. Официальные правила Springer можно найти
на сайте издательства. Статьи, отосланные ранее в журналы или на другие
конференции с рецензируемыми трудами, к рассмотрению НЕ
принимаются.
Принято решение о публикации двух томов с материалами конференции в сериях LNCS и CCIS Springer Nature, как и в предыдущих выпусках конференции MOTOR.
Авторы из российских организаций после загрузки статьи направляют на адрес оргкомитета motor24@ofim.oscsbras.ru копию заключения экспертной комиссии о возможности открытой публикации статьи.
Авторам статей для сборников трудов MOTOR'2024 следует руководствуется международными этическими правилами научных публикаций, включающими правила порядочности, конфиденциальности, учет возможных конфликтов интересов и др. (https://www.springernature.com/gp/authors/book-authors-code-of-conduct)
Том 1: Lecture Notes in Computer Science
5
Yuskov, Kulachenko, Melnikov, Kochetov
Stadium antennas deployment optimization
10
Popov
How to use barriers and symmetric regularization of Lagrange function in analysis of improper
nonlinear programming problems
13
Chirkova
Potential Game in General Transport Network with Symmetric Externalities
19
Orlov
On a Global Search in Bilevel Optimization Problems with a Bimatrix Game at the Lower Level
24
Lavlinskii, Panin, Plyasunov, Zyryanov
Production and infrastructure construction in a resource region: a comparative analysis of
mechanisms for forming a consortium of subsoil users
45
Nikolaev
On 1-skeleton of the cut polytopes
48
Rentsen
Recent Advances in Game Theory
49
Mikhailova
One optimization problem induced by the segregation problem for the sum of quasiperiodic
sequences
50
Rudakov, Ogorodnikov, Khachay
Branching algorithms for the Reliable Production Process Design Problem
52
Gabidullina
Assessing the Perron-Frobenius Root of Symmetric Positive Semidefinite Matrices by the Adaptive
Steepest Descent Method
54
Kolnogorov
UCB Strategies in a Gaussian Two-Armed Bandit Problem
63
Ilev, Il'ev
Сlustering complexity and an approximation algorithm for a version of the Cluster Editing problem
65
Gong, Huang, Huang, Wang, Wang, Xiao, Yan, Yang
A Unified Framework of Multi-Stage Multi-Winner Voting: An Axiomatic Exploration
74
Vasin, Grigoreva
On the optimal management of energy storage
76
Servakh, Malakh
Thе problem of planning investment projects with lending
92
Zhou, Mazalov
Dynamic Stability of Coalition Structures in Network-Based Pollution Control Games
95
Quliyev, Aida-zade
Automated and Automatic Systems of Management of an Optimization Programs Package for
Decisions Making
97
Zhao, Parilina
Network structure properties and opinion dynamics in two-layer networks with hypocrisy
Настоящая конференция продолжает многолетние традиции Байкальской,
Екатеринбургской, Новосибирской и Омской международных и
всероссийских конференций, имеющих богатую историю и регулярно
проводимых на территории Урала, Сибири и Дальнего Востока, начиная с
семидесятых годов 20 века.
Конференция
Сокращенное название
Год основания
Число мероприятий
Сайт
Байкальская международная школа семинар "Методы оптимизации и их приложения"
Начиная с 2019 года, четыре известные конференции объединились в один
общий цикл под новым названием MOTOR, расширяя географию и вовлекая
всё большее количество специалистов в области оптимизации, исследования
операций и их приложений.
Конференция будет проводиться в живописной зелёной зоне г. Омска в
Cronwel Park Ника. Отель Cronwell Park Ника соответствует высоким
стандартам качества гостиничного обслуживания, что позволяет ему входить
в число лучших гостиниц Омска. Здесь имеются оборудованные конференц-залы
для проведения мероприятий и прекрасные условия для отдыха гостей.
644099, Омск - 99, ул. Певцова, 13,
Омский филиал Института математики им. С.Л. Соболева СО РАН,
Оргкомитет конференции MOTOR-2024.
Тел. (3812) 236739,
Е-mail: motor24@ofim.oscsbras.ru
Компания BIA Technologies приглашает принять участие в Конкурсе докладов участников конференции.
К участию допускаются участники, опубликовавшие свои работы или получившие рекомендацию к публикации в сборнике трудов данной конференции в серии LNCS или CCIS издательства Springer Nature.
Конкурс проводится в трех номинациях: «Лучшая теоретическая работа», «Лучшая прикладная работа» и «Лучший молодой автор».
Победителям каждой номинации присуждается денежный приз.
Объявление победителей: 5 июля 2024 года.
Место проведения конференции MOTOR-2024: город Омск.
We are excited to announce the launch of a competition focused on solving industrial problems presented as challenges. This competition, provided in collaboration with one of our esteemed industrial partners, offers a unique opportunity for participants to showcase their problem-solving skills and innovative thinking. Whether you're a seasoned professional or an enthusiastic newcomer, this competition is your chance to make a significant impact in the industrial sector. This competition not only provides a platform for participants to demonstrate their technical skills but also fosters innovation and collaboration within the field. We encourage all interested individuals and teams to participate and contribute their creative solutions to real-world industrial challenges.
Конференция проводится при поддержке Математического Центра в Академгородке, соглашение с Министерством науки и высшего образования Российской Федерации №075-15-2022-282.