English
XXIII Международная конференция Теория математической оптимизации и исследование операций
XXIII Международная конференция Теория математической оптимизации и исследование операций MOTOR-2024 Омск Россия, 30 июня – 6 июля, 2024

 Новости
20.11.2024. Второй том трудов MOTOR'24 в серии CCIS
Анонсирован второй том трудов MOTOR'24 в серии CCIS издательства Springer Nature:
https://link.springer.com/book/9783031733642.
 
05.07.2024. Победители конкурса докладов

Объявлены победители Конкурса докладов (best paper award):
  • А. В. Николаев "On 1-Skeleton of the Cut Polytopes" в номинации «Лучшая теоретическая работа»,
  • И. А. Давыдов (совместная работа с А. М. Габдуллиной, М. Шевцовой, Д. И. Архиповым) "Tabu Search for a Service Zone Clustering Problem" в номинации «Лучшая прикладная работа»,
  • Д. В. Ярмошик (совместный доклад с М. И. Персияновым) "On the Application of Saddle-Point Methods for Combined Equilibrium Transportation Models" в номинации «Лучшая работа молодых авторов».
Программный комитет поздравляет всех лауреатов!
Конкурс проведен при спонсорской поддержке BIA Technologies.
 
30.06.2024. Программа конференции
Опубликована программа с расписанием работы секций. Перейти.
 
28.06.2024. Том LNCS
Опубликован первый том трудов MOTOR'24 в серии LNCS.
 
28.06.2024. Best paper award
Объявлен конкурс лучших докладов. Перейти.
 
26.06.2024. Сборник тезисов докладов
Опубликован сборник тезисов докладов. Открыть.
 
17.06.2024. Предварительная программа конференции
Опубликована предварительная программа конференции. Перейти.
 
07.06.2024. Анонс челленджей
Объявлен конкурс, состоящий из шести прикладных задач. Перейти.
 
10.04.2024. Списки статей для LNCS и CCIS
Уважаемые коллеги. На сайте выложены списки принятых статей в первый том (LNCS) и рекомендованных статей во второй том (CCIS).
 
15.03.2024. Изменение сроков извещения о включении статей в сборники трудов конференции
В связи с продлением срока подачи статей, извещение о включении статей в сборники трудов конференции переносится на 31 марта 2024 г.
 
11.02.2024. Изменение сроков подачи
Срок подачи статей и тезисов продлен до 29 февраля 2024.
 
04.02.2024. Изменение сроков подачи
Срок подачи статей и тезисов продлен до 19 февраля 2024.
 
17.01.2024. Система EquinOCS
Отправка тезисов и статей осуществляется через систему EquinOCS по ссылке:
https://equinocs.springernature.com/service/MOTOR2024.
 
16.01.2024. Решение о публикации в LNCS и CCIS Springer Nature
Принято решение о публикации двух томов с материалами конференции в сериях LNCS и CCIS Springer Nature, как и в предыдущих выпусках конференции MOTOR.
 
11.01.2024. Продление сроков отправки тезисов
Крайний срок для отправки тезисов перенесен на 5 февраля 2024 г. Ссылка на систему обработки тезисов и статей будет опубликована в данном разделе как только она станет доступна.
 
18.12.2023. Открыт сайт конференции
Создан сайт конференции.
 
 Тематика конференции
  • Математическое программирование
  • Дискретная оптимизация
  • Вычислительная сложность и приближенные алгоритмы
  • Метаэвристики и методы локального поиска
  • Теория игр
  • Оптимизация в машинном обучении и анализе данных
  • Параллельные вычисления для ускорения решения задач оптимизации
  • Приложения в исследовании операций: задачи составления расписаний, маршрутизации, размещения предприятий, упаковки и раскроя, управления производством и т.д.
 Программный комитет
Председатели программного комитета
  • Проф. А.В. Еремеев, Омский государственный университет им Ф.М. Достоевского; Новосибирский государственный университет (Россия)
  • Проф. Ю.А. Кочетов, Институт математики им. С.Л. Соболева СО РАН (Россия)
  • Проф. В.В. Мазалов, Институт прикладных математических исследований КарНЦ РАН (Россия)
  • Проф. П.М. Пардалос, Университет Флориды, Гейнсвилл (США); ВШЭ, Нижний Новгород (Россия)
  • Чл.-корр. РАН М.Ю. Хачай, Институт математики и механики им. Н.Н. Красовского УрО РАН (Россия)
Программный комитет
  1. Айда-заде К.Р. проф., д.ф.-м.н., член-корреспондент НАНА, Институт систем управления, Азербайджан
  2. Антипин А.С., проф., д.ф.-м.н., ФИЦ ИУ РАН, Россия
  3. Bagirov A., prof., dr., Federation University Australia, Балларат, Австралия
  4. Battaia O., prof., dr., KEDGE Business School, Бордо, Франция
  5. ван Беверн,Р.А., доцент, к.т.н., НГУ, Новосибирск, Россия
  6. Береснев В.Л., проф., д.ф.-м.н., ИМ СО РАН, Новосибирск, Россия
  7. Bolotashvili G., prof., dr., Georgian Technical University, Грузия
  8. Bushenkov V., prof., dr., University of Evora, Португалия
  9. Buzdalov M. dr., Aberystwyth University, Великобритания
  10. Быкадоров И. А. доцент, к.ф.-м.н., ИМ СО РАН, Новосибирск, Россия
  11. Васильев И.Л., к.ф.-м.н., ИДСТУ СО РАН, Иркутск, Россия
  12. Васин А.А., проф., д.ф.-м.н., МГУ, Москва, Россия
  13. Gao H., prof., dr., Qingdao University, China
  14. Гасников А.В., проф., д.ф.-м.н., Иннополис, Казань, Россия
  15. Гимади Э.Х., проф., д.ф.-м.н., ИМ СО РАН, Новосибирск, Россия
  16. Горнов А. Ю. д.т.н., ИДСТУ СО РАН, Иркутск, Россия
  17. Gurevsky E., dr., University of Nantes, Нант, Франция
  18. Davidovic T., prof., dr., Mathematical Institute SASA, Белград, Сербия
  19. Dolgui A., prof, dr., IMT Atlantique, Нант, Франция
  20. Ерзин А.И., проф., д.ф.-м.н., ИМ СО РАН, Новосибирск, Россия
  21. Золотых Н.Ю., д.ф.-м.н., Национальный исследовательский Нижегородский государственный университет им. Н. И. Лобачевского, Нижний Новгород, Россия
  22. Казаков А. Л., проф., д.ф.-м.н., ИДСТУ, Иркутск, Россия
  23. Калягин В.А., проф., д.ф.-м.н., НИУ ВШЭ, Нижний Новгород, Россия
  24. Картак В. М., проф., д.ф.-м.н., УГАТУ, Уфа, Россия
  25. Кибзун А.И., проф., д.ф.-м.н., МАИ, Москва, Россия
  26. Qian Ch. prof., dr., Nanjing University, Китай
  27. Kvasov D., DIMES, University of Calabria, Италия
  28. Ковалев М.Я., проф., д.ф.-м.н., ОИПИ НАН Беларуси, Минск, Белоруссия
  29. Kong L., prof., dr., Beijing Jiaotong University, China
  30. Коннов И.В. проф., д.ф.-м.н., КФУ, Казань, Россия
  31. Кононов А.В., д.ф.-м.н., ИМ СО РАН, Новосибирск, Россия
  32. Лазарев А. А. проф., д.ф.-м.н., ИПУ РАН, Москва, Россия
  33. Lin B., prof., dr., National Yang Ming Chiao Tung University, Синьчжу, Тайвань
  34. Maniezzo V., prof., dr., University of Bologna, Чезена, Италия
  35. Нурминский Е.А., проф., д.ф.-м.н., ИАиПУ ДВО РАН, Владивосток, Россия
  36. Петросян Л.А. проф., д.ф.-м.н., СПбГУ, Санкт-Петербург, Россия
  37. Попов Л.Д., проф., д.ф.-м.н., ИММ УРО РАН, Россия
  38. Посыпкин М.А. проф., д.ф.-м.н., член-корреспондент РАН, ФИЦ ИУ РАН, Россия
  39. Пяткин А.В., проф., д.ф.-м.н., ИМ СО РАН, Новосибирск, Россия
  40. Raha S., prof., dr., Indian Institute of Science, Бенгалуру, Индия
  41. Реттиева А.Н., Институт прикладных математических исследований КарНЦ РАН, Петрозаводск, Россия
  42. Семенкин Е.С., проф., д.т.н., СибГУ им. М.Ф. Решетнева, Красноярск, Россия
  43. Sergeyev Ya. prof., dr. University of Calabria, Италия
  44. Sifaleras A., prof., dr., University of Macedonia, Салоники, Греция
  45. Sleptchenko A. prof., dr., Khalifa University, ОАЭ
  46. Стрекаловский А.С., проф., д.ф.-м.н., ИДСТУ СО РАН, Иркутск, Россия
  47. Todosijevic, R. prof., dr., UPHF, Франция
  48. Tseveendorj I., prof., dr., Universite de Versailles-Saint Quentin en Yvelines, Версаль, Франция
  49. Хамисов О.В., проф,, д.ф.-м.н., ИСЭМ СО РАН, Иркутск, Россия
  50. Tsoy Y., dr., Ailys, Сеул, Республика Корея
  51. Chen X., prof., dr., Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing, China
  52. Cheng, Y. prof., dr., Jiangnan University, China
  53. Шананин А.А., проф., д.ф.-м.н., Академик РАН, МФТИ, Москва, Россия
  54. Jacimovic M., prof., dr., University of Montenegro, Черногория
  55. Yao X. prof., dr., Southern University of Science and Technology, Китай
 Основные даты
  • Прием тезисов докладов до 15 января 2024 г. 5 февраля 2024 г. 19 февраля 2024 г. 29 февраля 2024 г.
  • Прием статей в сборник трудов конференции до 5 февраля 2024 г. 19 февраля 2024 г. 29 февраля 2024 г.
  • Сообщение о принятии докладов 15 марта 2024 г.
  • Сообщение о включении статей в сборник трудов конференции до 3 апреля 2024 г.
  • Конференция с 30 июня по 6 июля 2024 г. (30 июня - день заезда, 6 июля - день отъезда)
 Приглашенные докладчики
Prof. Xujin Chen
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
Undirected Networks Immune to the Informational Braess's Paradox
The Informational Braess's paradox exposes a counterintuitive phenomenon that disclosing additional road segments to some selfish travelers results in increased travel times for these individuals. This paradox expands upon the classic Braess's Paradox by relaxing the assumption that all travelers possess identical and complete information about the network. In this presentation, we explore structual conditions that prevent the informational Braess paradox in undirected networks.
Prof. Rentsen Enkhbat
Business school of National University of Mongolia, Ulaanbaatar, Mongolia
Recent Advances in Game Theory
Тема доклада будет объявлена позднее.
Проф. Николай Н. Гущинский
Беларусь, Минск
Models and methods for optimization of electric public transport systems
The transition towards sustainable cities becomes an increasingly pressing issue because of the growing awareness about the climate change. One of the critical transition directions is to reduce the greenhouse gas emissions generated by transportation. One of efficient answers to this challenge is the implementation of electric public transportation systems. In order to achieve the best impact, it is imperative to design the infrastructure and the network of the public transportation in an optimized way. The following problems concerning strategic, tactical and operational aspects of the electric bus planning process and scheduling are discussed: a) investment of electric bus fleet and charging infrastructure; b) design of charging infrastructure; c) the electric vehicle scheduling; d) the charging scheduling problem. The models and optimization methods for different charging technologies are considered:
- slow plug-in chargers installed at bus depots;
- fast plug-in or pantograph chargers installed at terminals of bus lines or at bus stops;
- overhead contact lines or inductive (wireless) chargers that are used to recharge buses during driving;
- battery swapping.
Проф. Роланд Хильдебранд
МФТИ (Московский физико-технический институт), г. Долгопрудный, Россия
Tuning methods for minimization of self-concordant functions with optimal control
In the last decade the usage of optimization methods for performance estimation and tuning of other optimization methods has became fashionable. For instance, semi-definite programming allows to analyze the behaviour of accelerated gradient descent methods at minimizing functions of different regularity. Detecting the worst-case performance with respect to the minimized function and maximizing this performance with respect to the parameters of the method allows to obtain the best parameter set.
Here we show how to perform a similar analysis of the Newton method when minimizing self-concordant functions. This task arises as a subproblem in more complex structured convex optimization problems such as semi-definite programming inside path-following methods. The appropriate framework for optimizing the parameters, in particular, the step length and the search direction, is optimal control theory. We present a general technique to use the Pontryagin maximum principle in the analysis of the Newton step on a self-concordant function and specialize it in several case studies.
The talk in part presents joint work with Anastasia Ivanova.
Проф. Елена В. Константинова
China Three Gorges University, Yichang, China & Институт математики им. С.Л. Соболева СО РАН, Новосибирск, Россия
Recent progress in domination theory
In this talk, some recent results in domination theory are presented. In 2020, T.W. Haynes et al. introduced coalitions and coalition partitions based on dominating sets in graphs as a graph-theoretical model to describe political coalitions. The authors have been studied the property of this concept and suggested a list of open problems. In particular, it was suggested to study connected coalitions based on connected dominating sets. In this talk we focus on studying connected coalitions and their partitions in graphs with emphasising to polynomial-time algorithms determining whether the connected coalition number of a graph G of order n is either n or n-1. The talk is based on joint works with S. Alikhani, D. Bakhshesh, and H. Golmohammadi.
Проф. Панос М. Пардалос
Университет Флориды, Гейнсвилл, США; ВШЭ, Нижний Новгород, Россия
AI and Optimization for a Sustainable Future

Panos M. Pardalos, University of Florida
www.ie.ufl.edu/pardalos
https://nnov.hse.ru/en/latna/

Advances in AI tools are progressing rapidly and demonstrating the potential to transform our lives. The spectacular AI tools rely in part on their sophisticated mathematical underpinnings (e.g. optimization techniques and operations research tools), even though this crucial aspect is often downplayed.

In this lecture, we will discuss progress from our perspective in the field of AI and its applications in Energy systems and Sustainability.

Проф. Александр А. Шананин, академик РАН
Московский физико-технический институт, Москва, Россия
Mathematical modeling of the consumer loan market in Russia (joint talk with N.V. Trusov)
In this talk we present the mathematical description of the economic behavior of a rational household in consumer loan market. The modeling of the economic behavior of households is based on the concept of a rational representative economic agent and arises to F. Ramsey. The model is formalized as an optimal control problem on a finite time horizon. The household maximizes discounted consumption with constant risk aversion, managing the dynamics of its expenditures depending on the current parameters of the economic situation and the behavioral characteristics of the household itself. We consider an imperfect market when the interest rate on loans differs from the interest rate on deposits. The difference in interest rates on loans and deposits leads to non-smoothness of the right-hand side of the differential equation for the phase variable. This motivates to use the Pontryagin maximum principle in the form of F. Clark. Applying it, we obtain an area where the household does not interact with the banking system, the special regimes arise. If we tend the time horizon of an optimal control problem to infinity, it is possible to construct a synthesis. The synthesis allows us to determine an optimal control depending on the current value of the phase variable and the parameters of the economic situation. It depends on current interest rates and on the behavioral characteristics of a representative household. We develop and investigate a new model for the formation of interest rates on consumer loans based on an analysis of commercial interests and the logic of behavior of commercial banks. The model assumes that the borrowers’ incomes are described by a geometric Brownian motion. The commercial banks assess the default risk of borrowers. According to the Feynman–Kac formula, the assessment is reduced to solving a boundary value problem for partial differential equations. An analytical solution to this problem is constructed. It is possible to reduce the solution of the boundary value problem to the Cauchy problem for the heat equation with an external source and obtain a risk assessment in analytical form with a help of the Abel equation. The models of economic behavior of households in the consumer loan market and behavior of commercial banks are identified based on Russian statistics. A specialized software has been developed to analyze the demand for consumer credit. With its help, the problems of the consumer lending market in Russia are analyzed.
Prof. Zaiwen Wen
Peking University, China
Exploring the Learning-based Optimization Algorithms

Abstract: The recent revolutionary progress of artificial intelligence has brought significant challenges and opportunities to mathematical optimization. In this talk, we briefly discuss two examples on the integration of data, models, and algorithms for the development of optimization algorithms: ODE-based learning to optimize and learning-based optimization paradigms for solving integer programming. We will also report a few interesting perspectives on formalization and automated theorem proving, highlighting their potential impact and relevance in contemporary mathematical optimization.

Bio: Wen Zaiwen, Professor at Peking University. He mainly studies optimization algorithms and theory and their applications in machine learning. He was awarded the China Youth Science and Technology Award in 2016 and Beijing Outstanding Youth Zhongguancun Award in 2020. He was funded by the National Ten Thousand Talents Program for Science and Technology Innovation. He is an associate editor of “Journal of Scientific Computing”, "Communications in Mathematics and Statistics", "Journal of the Operations Research Society of China", "Journal of Computational Mathematics" and a technical editor of "Mathematical Programming Computation".

Prof. Wenwu Yu
Southeast University, China
"Distributed Optimization +" in Networks: A New Framework

Distributed optimization is solved by the mutual collaboration among a group of agents, which arises in various domains such as machine learning, resource allocation, location in sensor networks and so on. In this talk, we introduce two kinds of distributed optimization problems: (i) the agents share a common decision variable and local constraints; (ii) the agents have their individual decision variables but that are coupled by global constraints.

This talk comprehensively introduce the origin of distributed optimization, classical works as well as recent advances. In addition, based on reinforcement learning, shortest path planning, and mixed integer programming, we build the distributed optimization framework of distributed optimization, and also discuss their applications. Finally, we make a summary with future works for distributed optimization.

 Программа конференции
 Tutorials
Yury Kochetov
Black box optimization for business applications
The black-box optimization models are characterized by lack of analytical forms for the constraints and the objectives of the problem. In the black-box methods, we need efficiently integrate known analytical part with explicitly unknown correlations obtained from the business simulation models. The direct use of classical global optimization methods is prohibitive due to the lack of exact mathematical expressions. We cannot calculate the derivatives or sub-gradients. Moreover, the computational cost is high due to the simulations. Hence, we have to use the problem specific methods to optimize such black-box systems efficiently. Important applications stem from various disciplines: multi-echelon inventory systems, chemical and mechanical engineering, financial management, network topology design, and others. In this talk, we will discuss some directions in this area and theoretical bounds for global optimization methods. Successful cases for real-world applications will be presented.
Александр Сергеевич Стрекаловский
Новые Принципы Невыпуклой Оптимизации

В презентации представлены Элементы Теории Глобального поиска (ТГП) для задач оптимизации с целевой функцией и ограничениями типа равенства и неравенства, заданных DC функциями (разностями выпуклых функций). В таких задачах современный аппарат выпуклой оптимизации оказывается неоперабельным не только в смысле характеризации и отыскания глобального решения, но и при попытке «выскочить» из локального экстремума.

В докладе представлены основные свойства линейного пространства DC функций, в частности, что на компакте , и поэтому любая задача оптимизации с непрерывными данными может быть аппроксимирована, с любой заданной точностью, некоторой задачей DC оптимизации. Вначале основное внимание уделено каноническим задачам DC оптимизации, таким как выпуклые максимизация и DC минимизации на стандартных множествах, где представлен аппарат Условий Глобальной Оптимальности (УГО), составляющих ядро ТГП.

В центре рассмотрения находится задача DC оптимизации с DC ограничениями типа равенств и неравенств. С помощью Теории Точного Штрафа эта задача сводится к задаче без ограничений, целевая функция которой оказывается DC. Для последней задачи доказаны соответствующие УГО, инициирующие построение некоторой Схемы Глобального Поиска (СГП), использующей специальные Методы Локального Поиска (МЛокП), «внутри» которых применяются современные (классические) методы выпуклой оптимизации.

В заключение, представлены приложения разработанного подхода, такие как, численный поиск равновесий Нэша в биматричной игре, двухуровневая оптимизация, и классическая задача решения системы нелинейных уравнений (СНАУ). Приводится (ограниченный) список публикаций по математической оптимизации и оптимальному управлению.

Pavel Borisovsky
Application of GPU computing to solving discrete optimization problems
Parallel computing on graphic processors (GPUs) is getting more and more popular. Since NVIDIA released the CUDA development tool, it has become convenient to use GPUs for general-purpose computing and not just for graphics display tasks. A feature of a GPU is the presence of a large (hundreds and thousands) number of cores, which allows to significantly speed up the calculation, but requires to design special parallel algorithms. While the development of traditional processors (CPUs) has recently slowed down, the characteristics of the GPU (number of cores, memory size, power consumption, and cost) are improving rapidly. In this tutorial, we will learn the basics of GPU computing in CUDA and OpenCL and briefly review the pros and cons of using GPUs in various discrete optimization algorithms.
 Публикации в сборнике трудов

Авторы могут представить статьи, содержащие новые неопубликованные результаты по тематике конференции. Статьи объемом 12-15 страниц должны быть подготовлены в формате Springer LNCS и представлены в виде PDF. Официальные правила Springer можно найти на сайте издательства. Статьи, отосланные ранее в журналы или на другие конференции с рецензируемыми трудами, к рассмотрению НЕ принимаются.

Принято решение о публикации двух томов с материалами конференции в сериях LNCS и CCIS Springer Nature, как и в предыдущих выпусках конференции MOTOR.

Отправка тезисов и статей осуществляется через систему EquinOCS по ссылке: https://equinocs.springernature.com/service/MOTOR2024

Авторы из российских организаций после загрузки статьи направляют на адрес оргкомитета motor24@ofim.oscsbras.ru копию заключения экспертной комиссии о возможности открытой публикации статьи.

Авторам статей для сборников трудов MOTOR'2024 следует руководствуется международными этическими правилами научных публикаций, включающими правила порядочности, конфиденциальности, учет возможных конфликтов интересов и др. (https://www.springernature.com/gp/authors/book-authors-code-of-conduct)

Том 1: Lecture Notes in Computer Science

5 Yuskov, Kulachenko, Melnikov, Kochetov Stadium antennas deployment optimization
10 Popov How to use barriers and symmetric regularization of Lagrange function in analysis of improper nonlinear programming problems
13 Chirkova Potential Game in General Transport Network with Symmetric Externalities
19 Orlov On a Global Search in Bilevel Optimization Problems with a Bimatrix Game at the Lower Level
24 Lavlinskii, Panin, Plyasunov, Zyryanov Production and infrastructure construction in a resource region: a comparative analysis of mechanisms for forming a consortium of subsoil users
45 Nikolaev On 1-skeleton of the cut polytopes
48 Rentsen Recent Advances in Game Theory
49 Mikhailova One optimization problem induced by the segregation problem for the sum of quasiperiodic sequences
50 Rudakov, Ogorodnikov, Khachay Branching algorithms for the Reliable Production Process Design Problem
52 Gabidullina Assessing the Perron-Frobenius Root of Symmetric Positive Semidefinite Matrices by the Adaptive Steepest Descent Method
54 Kolnogorov UCB Strategies in a Gaussian Two-Armed Bandit Problem
63 Ilev, Il'ev Сlustering complexity and an approximation algorithm for a version of the Cluster Editing problem
65 Gong, Huang, Huang, Wang, Wang, Xiao, Yan, Yang A Unified Framework of Multi-Stage Multi-Winner Voting: An Axiomatic Exploration
74 Vasin, Grigoreva On the optimal management of energy storage
76 Servakh, Malakh Thе problem of planning investment projects with lending
92 Zhou, Mazalov Dynamic Stability of Coalition Structures in Network-Based Pollution Control Games
95 Quliyev, Aida-zade Automated and Automatic Systems of Management of an Optimization Programs Package for Decisions Making
97 Zhao, Parilina Network structure properties and opinion dynamics in two-layer networks with hypocrisy
98 Solodkin, Chezhegov, Nazykov, Beznosikov, Gasnikov Accelerated Stochastic Gradient Method with Applications to Consensus Problem in Markov- Varying Networks
100 Davydov Tabu Search for a service zone clustering problem
104 Huang, Hu, Yue, Liu, Liang Decision Analysis of Military Supply Chain Based on Stackelberg Game Model
115 Kharchenko, Kononov A Learning-Augmented Algorithm for the Parking Permit Problem with Three Permit Types
133 Turnaev, Panin Stochastic Greedy Algorithms for a Temporal Bin Packing Problem with Placement Groups
141 Kalyagin, Kostylev Robustness of Graphical Lasso Optimization Algorithm for Learning a Graphical Model
145 Trusov, Shananin Mathematical modeling of the interest rates formation on consumer loans in Russia
148 Petrosyan, Pankratova Differential Network Games with Different Type of Players Behavior
152 Yarmoshik, Persiianov On the Application of Saddle-Point Methods for Combined Equilibrium Transportation Models
153 Panin, Borisovsky, Eremeev, Sakhno Temporal Bin Packing Problems with Placement Constraints: MIP-Models and Complexity
155 Sevostyanov Filtering Correction for Robotic Arms Multipurpose Regulators
164 Vasilyev, Ushakov, Arkhipov, Davydov, Muftahov, Lavrentyeva Fast heuristics for a staff scheduling problem with time interval demand coverage

Том 2: Communications in Computer and Information Science

2 Erzin, Anikeev Energy-efficient regular strip covering with fixed-size identical sectors
4 Erzin, Shadrina Optimal placement of mobile sensors for distance-constrained line routing problem
11 Shperling, Kochetov Fitness function based algorithm for the irregular 2D bin packing problem
21 Khandeev, Neshchadim Pseudo-polynomial algorithms for some problems of searching for the largest subsets
22 Ibragimov On the Method for Refining A Priori Estimates of the Objective Function in the Speed-in-Action Problem for a Linear Discrete-Time System
28 Davydov Akentev Greedy algorithms for the temporal bin packing problem with failure domain
29 Zabudsky Maximin and Maxisum Network Location Problems with Various Metrics and Minimum Distance Constraints
30 Mazalov, Ivashko Optimal Stopping Strategies in Gambler's Ruin Game
35 Zakharova, Zakharov Methods for Solving Large-Scale Problems of Customer Order Scheduling
36 Hashimov, Aida-zade Optimization of the movement of measurement points in one problem of synthesis of temperature control of a furnace for heating the rods
37 Panasenko Approximation Scheme for a Sequence Weighted 2-Clustering with a Fixed Center of One Cluster
55 Yarullin, Zabotin, Shulgina A Relaxed Cutting Method for the Convex Programming Problem
57 Akhmatshin, Kazakovtsev Mini-batch K-means++ clustering initialization
62 Marakulin Differential information economies: REE-equilibrium under contract based approach
80 Ershov, Voroshilov UCB Strategy For Batch Data Processing On An Unknown Horizon
88 Mu, Guo, Sun A Fast Algorithm for Submodular Maximization with a Matroid Constraint
99 Vasilyev, Gruzdeva, Barkova, Boyarkin, Iakubovskii On Active-Set Methods for Quadratic Problems with Positive Semidefinite Matrices
102 Buchinskiy, Kotov, Treier On generic-case complexity and NP-completeness of the problem of solving tropical polynomial systems of equations
103 Tang, Li, Diao Some Combinatorial Algorithms on the Edge Dominating Number of Hypergraphs with Minimum Degree
106 Sorokovikov, Gornov, Zarodnyuk Numerical Investigation of the Swarm Intelligence Algorithm Obtained Using ChatGPT for Univariate Global Optimization
127 Alkousa, Stonyakin, Abdo, Alcheikh Optimal Convergence Rate for Mirror Descent Methods with Special Time-Varying Step Sizes Rules
131 Marciano, Guarracino, Bernhardt Improved Credit Scoring model with Hyperparameter Optimization
135 Kaidash Super Domination Polynomial of a Graph
136 Vasilev, Khamisov, Vasilev Short-Term Voltage Instability Identification: A Combined Approach of Maximum Lyapunov Exponent and K-Means Clustering
151 Uskov, Kotezhekova A Real-World Parcel Routing Problem: MIP Formulation and Heuristic
156 Stepanov, Musatov Migrational Stability of Plane Tilings
158 Savchuk, Stonyakin, Puchinin, Alkousa, Gasnikov First-Order Methods for Variational Inequalities and Saddle Point Problems with Relative Inexact Information
 Тезисы конференции

Крайний срок для отправки тезисов перенесен на 29 февраля 2024 г.

Отправка тезисов и статей осуществляется через систему EquinOCS по ссылке: https://equinocs.springernature.com/service/MOTOR2024

 Оргвзнос

Стоимость участия в конференции для представителей бизнес-компаний - 50 тыс. рублей без учета НДС.

 Предыдущие конференции

Настоящая конференция продолжает многолетние традиции Байкальской, Екатеринбургской, Новосибирской и Омской международных и всероссийских конференций, имеющих богатую историю и регулярно проводимых на территории Урала, Сибири и Дальнего Востока, начиная с семидесятых годов 20 века.

Конференция Сокращенное название Год основания Число мероприятий Сайт
Байкальская международная школа семинар "Методы оптимизации и их приложения" MOPT 1967 17 http://isem.irk.ru
Всероссийская конференция "Математическое программирование и приложения" MPA 1972 15 http://mpa.imm.uran.ru
Международная конференция "Дискретная оптимизация и исследование операций" DOOR 1996 9 http://www.math.nsc.ru
Международная конференция "Проблемы оптимизации и их приложения" OPTA 1997 7 http://opta18.oscsbras.ru
 О конференции

Начиная с 2019 года, четыре известные конференции объединились в один общий цикл под новым названием MOTOR, расширяя географию и вовлекая всё большее количество специалистов в области оптимизации, исследования операций и их приложений.

Конференция Даты проведения Место проведения Труды
MOTOR 2023 2-8 июля 2023 Екатеринбург, Россия Vol.1 Vol.2
MOTOR 2022 2-6 июля 2022 Петрозаводск, Россия Vol.1 Vol.2
MOTOR 2021 5-10 июля 2021 Иркутск - Байкал, Россия Vol.1 Vol.2
MOTOR 2020 6-10 июля 2020 Новосибирск (online), Россия Vol.1 Vol.2
MOTOR 2019 8-12 июля 2019 Екатеринбург, Россия Vol.1 Vol.2
 Место проведения

Конференция будет проводиться в живописной зелёной зоне г. Омска в Cronwel Park Ника. Отель Cronwell Park Ника соответствует высоким стандартам качества гостиничного обслуживания, что позволяет ему входить в число лучших гостиниц Омска. Здесь имеются оборудованные конференц-залы для проведения мероприятий и прекрасные условия для отдыха гостей.

Cronwell Park Ника

644015, Россия, г. Омск, ул. Суворова, 110

https://nika.cronwell.com/about/index.php

 Контакты
644099, Омск - 99, ул. Певцова, 13,
Омский филиал Института математики им. С.Л. Соболева СО РАН,
Оргкомитет конференции MOTOR-2024.
Тел. (3812) 236739,
Е-mail: motor24@ofim.oscsbras.ru
 Best paper award

Компания BIA Technologies приглашает принять участие в Конкурсе докладов участников конференции.

К участию допускаются участники, опубликовавшие свои работы или получившие рекомендацию к публикации в сборнике трудов данной конференции в серии LNCS или CCIS издательства Springer Nature.

Конкурс проводится в трех номинациях: «Лучшая теоретическая работа», «Лучшая прикладная работа» и «Лучший молодой автор».

Победителям каждой номинации присуждается денежный приз.

Объявление победителей: 5 июля 2024 года.

Место проведения конференции MOTOR-2024: город Омск.

Ознакомиться с положением конкурса можно здесь.

 Challenges

MOTOR'24 Challenges.

We are excited to announce the launch of a competition focused on solving industrial problems presented as challenges. This competition, provided in collaboration with one of our esteemed industrial partners, offers a unique opportunity for participants to showcase their problem-solving skills and innovative thinking. Whether you're a seasoned professional or an enthusiastic newcomer, this competition is your chance to make a significant impact in the industrial sector. This competition not only provides a platform for participants to demonstrate their technical skills but also fosters innovation and collaboration within the field. We encourage all interested individuals and teams to participate and contribute their creative solutions to real-world industrial challenges.

Challenge Rules

Challenge 1: Algorithms for single or multi-level optimization with black-box terms.
Challenge 2: Warm start in Quadratic Programming solver.
Challenge 3: Parameter optimization for restarted mixed precision iterative sparse solver.
Challenge 4: Universal rules for suboptimal balls packing or minimized correlation vector frames.
Challenge 5: Using Large Language Models for Optimization Modeling.
Challenge 6: Loss-Less Network Compression.

 Организаторы и спонсоры
Конференция проводится при поддержке Математического Центра в Академгородке, соглашение с Министерством науки и высшего образования Российской Федерации №075-15-2022-282.
©2024, Омский филиал Института математики им. С.Л. Соболева СО РАН.